upland moa Megalapteryx didinus (Owen, 1883) (c) Gallacea scleroderma*, (d) Gallacea sp. ‘Nelson Lakes’*, (e) Rossbeevera pachydermis*, (f) Russula macrocystidiata*, in Boast, Wood, Cooper, Bolstridge, Perry et Wilmshurst, 2025. |
Abstract
Mycovores (animals that consume fungi) are important for fungal spore dispersal, including ectomycorrhizal (ECM) fungi symbiotic with forest-forming trees. As such, fungi and their symbionts may be impacted by mycovore extinction. New Zealand (NZ) has a diversity of unusual, colourful, endemic sequestrate (truffle-like) fungi, most of which are ECM. As NZ lacks native land mammals (except bats), and sequestrate fungi are typically drab and mammal-dispersed, NZ’s sequestrate fungi are hypothesized to be adapted for bird dispersal. However, there is little direct evidence for this hypothesis, as 41% of NZ’s native land bird species became extinct since initial human settlement in the thirteenth century. Here, we report ancient DNA and spores from the inside of two coprolites of NZ’s extinct, endemic upland moa (Megalapteryx didinus) that reveal consumption and likely dispersal of ECM fungi, including at least one colourful sequestrate species. Contemporary data from NZ show that birds rarely consume fungi and that the introduced mammals preferentially consume exotic fungi. NZ’s endemic sequestrate fungi could therefore be dispersal limited compared with fungi that co-evolved with mammalian dispersers. NZ’s fungal communities may thus be undergoing a gradual species turnover following avian mycovore extinction and the establishment of mammalian mycovores, potentially affecting forest resilience and facilitating invasion by exotic tree taxa.
Keywords: evolutionary anachronism, moa, New Zealand, extinction, ancient DNA, mycophagy
(a) Upland moa skeleton, (b) HC coprolite X17/11/33, and (c–h) examples of fungi identified from aDNA (* denotes taxa with congruent spore evidence): (c) Gallacea scleroderma*, (d) Gallacea sp. ‘Nelson Lakes’*, (e) Rossbeevera pachydermis*, (f) Russula macrocystidiata*, (g) Cortinarius sp. ‘Blyth Track’, (h) Cortinarius violaceovolvatus. Photo credits: (a) Wikimedia Commons, (b) Alexander P. Boast, (c–h) Noah Siegel. |
Leave a Comment